前回の復習
今回紹介する音場最適化手法(Planarity)は激ムズなので、前回の記事の内容を確認してから本記事を読むことをお勧めいたいします。





スポンサーリンク
Planarityとの出会い
今回紹介するPlanarityという音場最適化手法はイギリスのサリー大学(University of Surrey)のSpeech and Signal Processing というグループが発表したものです。
Audio Engineering Societyという学会に参加したときに、この手法の発表をしていました。
2013年当時の私は「やられたな」、「0.5歩ぐらい先を行かれているな」と感じました。ただ、自慢になりますが、発表を聞いてから理論を理解し、3週間後には論文と全く同じ解析をトレースできました。(世界の先端についていけている実感がありました。学生に戻りたいな。。。。(笑))
Planarityを簡単に説明すると、過去の記事で紹介した”Acoustic Contrast Optimization”と”Lease Squares Optimization”の良いとこ取りができそうな手法です。
論文
Philip Coleman, Philip Jackson, Marek Olik, and Abildgaard Pedersen, “Optimizing the planarity of sound zones”, AES 52nd International conference, Guildford UK, September 2-4 2013.
https://www.researchgate.net/publication/257918766_Optimizing_the_Planarity_of_Sound_Zones
ちなみに、上記の論文では”Lease Squares Optimization”のことを”Pressure matching”と呼んでいます。また、”Planarity”は”Acoustic Contrast Optimization”の派生形なので、”Acoustic Contrast with Planarity Optimization”と呼んでいる論文もあります。
Planarityの理論
先にも述べたように、理論はむずいです。なので、簡単な紹介だと思って読み進めてください。
“Planarity”はブライトゾーン内の音場が、平面波が伝搬するような音場にすることができる音場制御方法(音場最適化手法)です。
“Acoustic Contrast Optimization”はAcoustic Contrastを最大にする音場最適化手法でした。そのため、Acoustic Contrastを最大することはできますが、「音を聴く環境としてはどうなの?」という疑問があります。
ブライトゾーンで音を聴いたときに、あまりにも変な音環境(残響が大きかったり、左右の耳の音量が違ったり)することは良くありません。
この”Acoustic Contrast Optimization”の課題を平面波が伝搬するような音場を構成できるように改良しよう!というのがPlanarityのコンセプトです
“Planarity”の評価関数は下式になります。ちなみに評価関数J_ACPはスカラーです。
J_{ACP} = q^H G_D^H G_D q + λ_{C}(q^H G_D^H H_B^H Γ H_B G_D q -B) + λ_{M}(q^H q – E_m)
ここで、H_Bはブライトゾーンのステアリング行列、Γは平面波の角度を調節するための重み行列です。
ちなみに、”Acoustic Contrast Optimization”の評価関数J_ACは下式です。
J_{AC} = q^H G_D^H G_D q + λ_{C}(q^H G_D^H G_D q -B) + λ_{M}(q^H q – E_m)
“Acoustic Contrast Optimization”の評価関数にH_BとΓを足しただけですね。
ただ、この2つの行列の算出方法がむずいんすよ。ステアリング行列は下式で表されます。
H_B=\left( \begin{array}{c} h_1 \\ \vdots \\ h_i \\ \vdots \\ h_{LB} \end{array} \right)
ここで、hiは下記の最大固有値の固有ベクトルと一致します。
(S_i^H S_i+βI)^{-1} P_i^H P_i
Siはパスバンド、Piはストップバンドで、下式で表します。
P_i=( g_{p,c} ) , S_i=( g_{s,c} )
gi,cはグリーン関数とバンドレンジiを用いて下式で表します。
g_{i,c} = \frac{e^{j k r_c u_i} p_B}{L_B}
u_i = \left(
\begin{array}{c}
sinφ \\
cosφ
\end{array}
\right)
長くなりそうなので、とりあえず理論式はここまでにします。詳しく知りたい方はぜひ論文を読んでみてください。
MATLABで論文の検証
では、プログラムを組んで理論を検証しましょう。論文の解析条件を図1に示します。図1の○は入力(点音源)、・は応答点を示します。応答点の群で構成される右側のゾーンがブライトゾーンで、左側がダークゾーンです。
図1 論文の解析条件
解析結果を図2に示します。subplot(2,1,1-3)が音圧分布でsubplot(2,1,4-6)が位相の分布図です。この解析の目的は、ゾーンの前方から音が聞こえるように音場を制御することです。PC(Planarity Control)では前方から後方(図の上から下方向)に音が伝搬しています。ACC(Acoustic Contrast Control)では音の方向は定まっていません。PCandACC(Pressure matching Control and Acoustic Contrast Control)では似せたような解析はできますが、すこし、前方ではなく、少し斜めに音が伝搬しています。
図2 論文の検証結果
ちなみに、PCandACC(Pressure matching Control and Acoustic Contrast Control)は”Acoustic Contrast Optimization”の評価関数と重み係数を乗じた”Lease Squares Optimization”の評価関数を合体させた音場最適化手法です。
サリー大学では「PlanarityはAcoustic Contrastを高く保ちつつ、ブライトゾーンの音場環境をデザインできる手法」と主張しています。
Acoustic Contrastを高く保ててるか気になりますよね?気になる方は自分で計算してみてください。
今回はこのへんでGood luck
スポンサーリンク
プログラムは下記のfunctionファイルをカレントディレクトリに保存してください。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | function [G]=cell_matrix(G0,N1,N2,f) %cell_matrix %It transform from cell to matrix. %for example %G--->{2,2}(1:10) %G{1,1}(1)=1 %G{2,1}(1)=2 %G{1,2}(1)=3 %G{2,2}(1)=4 %A=[1 3 % 2 4] G=zeros(N1,N2); for n1=1:N1 for n2=1:N2 if isnan(G0{n1,n2}(f))==1 G(n1,n2)=0; else G(n1,n2)=G0{n1,n2}(f); end end end end |
1 2 3 4 5 6 7 8 9 | function [A]=cellzeros(n1,n2,lengthnakami) A=cell(n1,n2); for n11=1:n1 for n22=1:n2 A{n11,n22}(1:lengthnakami,1)=zeros(lengthnakami,1); end end end |
1 2 3 4 5 6 7 8 9 | function [r]=radius(x1,x2,y1,y2,z1,z2) r=sqrt( ...... ( x2 - x1 )^2 ..... +( y2 - y1 )^2 ..... +( z2 - z1 )^2 ..... ); end |
たしか、通常の「eigs.m」ではエラーがでるので、少し書き換えているはず。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 | function varargout = EIGS(varargin) %EIGS Find a few eigenvalues and eigenvectors of a matrix using ARPACK % D = EIGS(A) returns a vector of A's 6 largest magnitude eigenvalues. % A must be square and should be large and sparse. % % [V,D] = EIGS(A) returns a diagonal matrix D of A's 6 largest magnitude % eigenvalues and a matrix V whose columns are the corresponding % eigenvectors. % % [V,D,FLAG] = EIGS(A) also returns a convergence flag. If FLAG is 0 then % all the eigenvalues converged; otherwise not all converged. % % EIGS(A,B) solves the generalized eigenvalue problem A*V == B*V*D. B % must be symmetric (or Hermitian) positive definite and the same size as % A. EIGS(A,[],...) indicates the standard eigenvalue problem A*V == V*D. % % EIGS(A,K) and EIGS(A,B,K) return the K largest magnitude eigenvalues. % % EIGS(A,K,SIGMA) and EIGS(A,B,K,SIGMA) return K eigenvalues. If SIGMA is: % 'LM' or 'SM' - Largest or Smallest Magnitude % For real symmetric problems, SIGMA may also be: % 'LA' or 'SA' - Largest or Smallest Algebraic % 'BE' - Both Ends, one more from high end if K is odd % For nonsymmetric and complex problems, SIGMA may also be: % 'LR' or 'SR' - Largest or Smallest Real part % 'LI' or 'SI' - Largest or Smallest Imaginary part % If SIGMA is a real or complex scalar including 0, EIGS finds the % eigenvalues closest to SIGMA. For scalar SIGMA, and when SIGMA = 'SM', % B need only be symmetric (or Hermitian) positive semi-definite since it % is not Cholesky factored as in the other cases. % % EIGS(A,K,SIGMA,OPTS) and EIGS(A,B,K,SIGMA,OPTS) specify options: % OPTS.issym: symmetry of A or A-SIGMA*B represented by AFUN [{false} | true] % OPTS.isreal: complexity of A or A-SIGMA*B represented by AFUN [false | {true}] % OPTS.tol: convergence: Ritz estimate residual <= tol*NORM(A) [scalar | {eps}] % OPTS.maxit: maximum number of iterations [integer | {300}] % OPTS.p: number of Lanczos vectors: K+1<p<=N [integer | {2K}] % OPTS.v0: starting vector [N-by-1 vector | {randomly generated}] % OPTS.disp: diagnostic information display level [0 | {1} | 2] % OPTS.cholB: B is actually its Cholesky factor CHOL(B) [{false} | true] % OPTS.permB: sparse B is actually CHOL(B(permB,permB)) [permB | {1:N}] % Use CHOL(B) instead of B when SIGMA is a string other than 'SM'. % % EIGS(AFUN,N) accepts the function AFUN instead of the matrix A. AFUN is % a function handle and Y = AFUN(X) should return % A*X if SIGMA is unspecified, or a string other than 'SM' % A\X if SIGMA is 0 or 'SM' % (A-SIGMA*I)\X if SIGMA is a nonzero scalar (standard problem) % (A-SIGMA*B)\X if SIGMA is a nonzero scalar (generalized problem) % N is the size of A. The matrix A, A-SIGMA*I or A-SIGMA*B represented by % AFUN is assumed to be real and nonsymmetric unless specified otherwise % by OPTS.isreal and OPTS.issym. In all these EIGS syntaxes, EIGS(A,...) % may be replaced by EIGS(AFUN,N,...). % % Example: % A = delsq(numgrid('C',15)); d1 = eigs(A,5,'SM'); % % Equivalently, if dnRk is the following one-line function: % %----------------------------% % function y = dnRk(x,R,k) % y = (delsq(numgrid(R,k))) \ x; % %----------------------------% % % n = size(A,1); opts.issym = 1; % d2 = eigs(@(x)dnRk(x,'C',15),n,5,'SM',opts); % % See also EIG, SVDS, ARPACKC, FUNCTION_HANDLE. % Copyright 1984-2007 The MathWorks, Inc. % $Revision: 1.45.4.8 $ $Date: 2007/05/23 18:54:51 $ % EIGS provides the reverse communication interface to ARPACK library % routines. EIGS attempts to provide an interface for as many different % algorithms as possible. The reverse communication interfaces are % documented in the ARPACK Users' Guide, ISBN 0-89871-407-9. cputms = zeros(5,1); t0 = cputime; % start timing pre-processing % Process inputs and do error-checking if (nargout > 3) error( 'MATLAB:eigs:TooManyOutputs' , 'Too many output arguments.' ) end % Error check inputs and derive some information from them [A,Amatrix,isrealprob,issymA,n,B,classAB,k,eigs_sigma,whch, ... sigma,tol,maxit,p,info,eigs_display,cholB,permB,resid,useeig,afunNargs] = ... checkInputs(varargin{:}); % Now have enough information to do early return on cases EIGS does not % handle. For these cases, use the full EIG code. if useeig fullEig(nargout); return end if strcmp(eigs_sigma, 'SM' ) || ~ischar(eigs_sigma) % eigs(A,B,k,scalarSigma) or eigs(A,B,k,'SM'), B may be [] % Note: sigma must be real for [s,d]saupd and [s,d]naupd % If sigma is complex, even if A and B are both real, we use [c,z]naupd. % This means that mode=3 in [s,d]naupd, which has % OP = real(inv(A - sigma*M)*M) and B = M % reduces to the same OP as [s,d]saupd and [c,z]naupd. % A*x = lambda*M*x, M symmetric (positive) semi-definite % => OP = inv(A - sigma*M)*M and B = M % => shift-and-invert mode mode = 3; elseif isempty(B) % eigs(A,k,stringSigma) or eigs(A,[],k,stringSigma), stringSigma~='SM' % A*x = lambda*x % => OP = A and B = I mode = 1; else % eigs(A,B,k,stringSigma), stringSigma~='SM' % A*x = lambda*B*x % Since we can always Cholesky factor B, follow the advice of % Remark 3 in ARPACK Users' Guide, and do not use mode = 2. % Instead, use mode = 1 with OP(x) = R'\(A*(R\x)) and B = I % where R is B's upper triangular Cholesky factor: B = R'*R. % Finally, V = R\V returns the actual generalized eigenvectors of (A,B). mode = 1; end if cholB || ((mode == 1) && ~isempty(B)) % The reordering permutation permB is [] unless B is sparse [RB,RBT,permB] = CHOLfactorB; end permAsB = []; if (mode == 3) && Amatrix % need lu(A-sigma*B) % The reordering permutation permAsB is [] unless A-sigma*B is sparse [L,U,P,permAsB] = LUfactorAminusSigmaB; end % if (mode == 3) && Amatrix % Allocate outputs and ARPACK work variables if isrealprob if issymA % real and symmetric if strcmp(classAB, 'single' ) aupdfun = 'ssaupd' ; eupdfun = 'sseupd' ; else aupdfun = 'dsaupd' ; eupdfun = 'dseupd' ; end lworkl = int32(p*(p+8)); d = zeros(k,1,classAB); else % real but not symmetric if strcmp(classAB, 'single' ) aupdfun = 'snaupd' ; eupdfun = 'sneupd' ; else aupdfun = 'dnaupd' ; eupdfun = 'dneupd' ; end lworkl = int32(3*p*(p+2)); workev = zeros(3*p,1,classAB); d = zeros(k+1,1,classAB); di = zeros(k+1,1,classAB); end v = zeros(n,p,classAB); workd = zeros(n,3,classAB); workl = zeros(lworkl,1,classAB); else % complex if strcmp(classAB, 'single' ) aupdfun = 'cnaupd' ; eupdfun = 'cneupd' ; else aupdfun = 'znaupd' ; eupdfun = 'zneupd' ; end zv = zeros(2*n*p,1,classAB); workd = complex(zeros(n,3,classAB)); zworkd = zeros(2*numel(workd),1,classAB); lworkl = int32(3*p^2+5*p); workl = zeros(2*lworkl,1,classAB); workev = zeros(2*2*p,1,classAB); zd = zeros(2*(k+1),1,classAB); rwork = zeros(p,1,classAB); end ldv = int32(n); ipntr = zeros(15,1, 'int32' ); ido = int32(0); % reverse communication parameter, initial value if isempty(B) || (mode == 1) bmat = 'I' ; % standard eigenvalue problem else bmat = 'G' ; % generalized eigenvalue problem end nev = int32(k); % number of eigenvalues requested ncv = int32(p); % number of Lanczos vectors iparam = zeros(11,1, 'int32' ); % iparam(1) = ishift = 1 ensures we are never asked to handle ido=3 iparam([1 3 7]) = [1 maxit mode]; select = zeros(p,1, 'int32' ); % To Do: Remove this error when ARPACKC supports singles if strcmp(classAB, 'single' ) error( 'MATLAB:eigs:single' , ... 'EIGS does not support single precision inputs.' ) end % The ARPACK routines return to EIGS many times per each iteration but we % only want to display the Ritz values once per iteration (if opts.disp>0). % Keep track of whether we've displayed this iteration yet in eigs_iter. eigs_iter = 0; cputms(1) = cputime - t0; % end timing pre-processing % Iterate until ARPACK's reverse communication parameter ido says to stop while (ido ~= 99) t0 = cputime; % start timing ARPACK calls **aupd if isrealprob arpackc( aupdfun, ido, ... bmat, int32(n), whch, nev, tol, resid, ncv, ... v, ldv, iparam, ipntr, workd, workl, lworkl, info ); else % The FORTRAN ARPACK routine expects the complex input zworkd to have % real and imaginary parts interleaved, but the OP about to be % applied to workd expects it in MATLAB's complex representation with % separate real and imaginary parts. Thus we need both. zworkd(1:2: end -1) = real(workd); zworkd(2:2: end ) = imag(workd); arpackc( aupdfun, ido, ... bmat, int32(n), whch, nev, tol, resid, ncv, ... zv, ldv, iparam, ipntr, zworkd, workl, lworkl, rwork, info ); workd = reshape(complex(zworkd(1:2: end -1),zworkd(2:2: end )),[n,3]); end if (info < 0) error( 'MATLAB:eigs:ARPACKroutineError' , ... 'Error with ARPACK routine %s: info = %d' , ... aupdfun,full(double(info))) end cputms(2) = cputms(2) + (cputime-t0); % end timing ARPACK calls **aupd t0 = cputime; % start timing MATLAB OP(X) % Compute which columns of workd ipntr references cols = checkIpntr; % The ARPACK reverse communication parameter ido tells EIGS what to do switch ido case {-1,1} % abs(ido)==1 => workd(:,col2) = OP*workd(:,col1) switch mode case 1 % mode==1 => OP(x) = K*x if isempty(B) % standard eigenvalue problem % OP(x) = A*x workd(:,cols(2)) = Amtimes(workd(:,cols(1))); else % generalized eigenvalue problem % OP(x) = R'\(A*(R\x)) workd(:,cols(2)) = ... RBTsolve(Amtimes(RBsolve(workd(:,cols(1))))); end case 3 % mode==3 => OP(x) = inv(A-sigma*B)*B*x if isempty(B) % standard eigenvalue problem workd(:,cols(2)) = AminusSigmaBsolve(workd(:,cols(1))); else % generalized eigenvalue problem switch ido case -1 workd(:,cols(2)) = Bmtimes(workd(:,cols(1))); workd(:,cols(2)) = ... AminusSigmaBsolve(workd(:,cols(2))); case 1 % mode==3 and ido==1: % workd(:,col2) = inv(A-sigma*B)*B*x % but B*x is already pre-computed in workd(:,col3) workd(:,cols(2)) = ... AminusSigmaBsolve(workd(:,cols(3))); otherwise error( 'MATLAB:eigs:UnknownRCP' ,... 'Unknown reverse communication parameter.' ) end % switch ido (inner) end % if isempty(B) otherwise % mode is not 1 or 3 error( 'MATLAB:eigs:UnknownMode' , 'Unknown mode.' ) end % switch (mode) case 2 % ido==2 => workd(:,col2) = B*workd(:,col1) if (mode == 3) workd(:,cols(2)) = Bmtimes(workd(:,cols(1))); else error( 'MATLAB:eigs:UnknownMode' , 'Unknown mode.' ) end case 3 % ido==3 => EIGS does not know how to compute shifts % setting iparam(1) = ishift = 1 ensures this never happens warning( 'MATLAB:eigs:WorklShiftsUnsupported' , ... [ 'EIGS does not support computing the shifts in workl.' ... ' Returning immediately.' ]) ido = int32(99); case 99 % ido==99 => ARPACK is done otherwise error( 'MATLAB:eigs:UnknownReverseCommParamFromARPACK' ,... [ 'Unknown value of reverse communication parameter' ... ' returned from %s.' ],aupdfun) end % switch ido (outer) cputms(3) = cputms(3) + (cputime-t0); % end timing MATLAB OP(X) if eigs_display % displayRitzValues; end end % while (ido ~= 99) t0 = cputime; % start timing post-processing if (info < 0) error( 'MATLAB:eigs:ARPACKroutineError' , ... 'Error with ARPACK routine %s: info = %d' ,aupdfun,full(info)); end % if (info < 0) if (nargout >= 2) rvec = int32(true); % compute eigenvectors else rvec = int32(false); % do not compute eigenvectors end if isrealprob if issymA arpackc( eupdfun, rvec, 'A' , select, ... d, v, ldv, sigma, ... bmat, int32(n), whch, nev, tol, resid, ncv, ... v, ldv, iparam, ipntr, workd, workl, lworkl, info ); if strcmp(whch, 'LM' ) || strcmp(whch, 'LA' ) d = flipud(d); if (rvec == 1) v(:,1:k) = v(:,k:-1:1); end end if ((strcmp(whch, 'SM' ) || strcmp(whch, 'SA' )) && (rvec == 0)) d = flipud(d); end else % If sigma is complex, isrealprob=true and we use [c,z]neupd. % So use sigmar=sigma and sigmai=0 here in dneupd. arpackc( eupdfun, rvec, 'A' , select, ... d, di, v, ldv, sigma, 0, workev, ... bmat, int32(n), whch, nev, tol, resid, ncv, ... v, ldv, iparam, ipntr, workd, workl, lworkl, info ); d = complex(d,di); if rvec d(k+1) = []; else zind = find(d == 0); if isempty(zind) d = d(k+1:-1:2); else d(max(zind)) = []; d = flipud(d); end end end else zsigma = [real(sigma); imag(sigma)]; arpackc( eupdfun, rvec, 'A' , select, ... zd, zv, ldv, zsigma, workev, ... bmat, int32(n), whch, nev, tol, resid, ncv, zv, ... ldv, iparam, ipntr, zworkd, workl, lworkl, ... rwork, info ); if issymA d = zd(1:2: end -1); else d = complex(zd(1:2: end -1),zd(2:2: end )); end v = reshape(complex(zv(1:2: end -1),zv(2:2: end )),[n p]); end flag = processEUPDinfo(nargin<3); if (issymA) || (~isrealprob) if (nargout <= 1) if isrealprob varargout{1} = d; else varargout{1} = d(k:-1:1,1); end else varargout{1} = v(:,1:k); varargout{2} = diag(d(1:k,1)); if (nargout >= 3) varargout{3} = flag; end end else if (nargout <= 1) varargout{1} = d; else cplxd = find(di ~= 0); % complex conjugate pairs of eigenvalues occur together cplxd = cplxd(1:2: end ); v(:,[cplxd cplxd+1]) = [complex(v(:,cplxd),v(:,cplxd+1)) ... complex(v(:,cplxd),-v(:,cplxd+1))]; varargout{1} = v(:,1:k); varargout{2} = diag(d); if (nargout >= 3) varargout{3} = flag; end end end if (nargout >= 2) && (mode == 1) && ~isempty(B) varargout{1} = RBsolve(varargout{1}); end cputms(4) = cputime-t0; % end timing post-processing cputms(5) = sum(cputms(1:4)); % total time if (eigs_display == 2) printTimings; end %-------------------------------------------------------------------------% % Nested functions %-------------------------------------------------------------------------% % checkInputs error checks the inputs to EIGS and also derives some % variables from them: % A may be a matrix or a function applying OP. % Amatrix is true if A is a matrix, false if A is a function. % isrealprob is true if all of A, B and sigma are real, false otherwise. % issymA is true if A is symmetric, false otherwise. % n is the size of (square) A and B. % B is [] for the standard problem. Otherwise it may be one of B, CHOL(B) % or CHOL(B(permB,permB)). % classAB is single if either A or B is single, otherwise double. % k is the number of eigenvalues to be computed. % eigs_sigma is the value for sigma passed in by the user, 'LM' if it was % unspecified. eigs_sigma may be either a string or a scalar value. % whch is the ARPACK string corresponding to eigs_sigma and mode. % sigma is the ARPACK scalar corresponding to eigs_sigma and mode. % tol is the convergence tolerance. % maxit is the maximum number of iterations. % p is the number of Lanczos vectors. % info is the start value, initialized to 1 or 0 to indicate whether to use % resid as the start vector or not. % eigs_display is true if Ritz values should be displayed, false otherwise. % cholB is true if CHOL(B) was passed in instead of B, false otherwise. % permB may be [], otherwise it is the permutation in CHOL(B(permB,permB)). % resid is the start vector if specified and info=1, otherwise all zero. % useeig is true if we need to use EIG instead of ARPACK, otherwise false. % afunNargs is the range of EIGS' varargin that are to be passed as % trailing parameters to the function as in afun(X,P1,P2,...). function [A,Amatrix,isrealprob,issymA,n,B,classAB,k, ... eigs_sigma,whch,sigma,tol,maxit,p,info,eigs_display,cholB,... permB,resid,useeig,afunNargs] = checkInputs(varargin) % Process inputs and do error-checking % Process the input A or the inputs AFUN and N % Start to derive some qualities (real, symmetric) about the problem if isfloat(varargin{1}) A = varargin{1}; Amatrix = true; else % By checking the function A with fcnchk, we can now use direct % function evaluation on the result, without resorting to feval A = fcnchk(varargin{1}); Amatrix = false; end % isrealprob = isreal(A) && isreal(B) && isreal(sigma) isrealprob = true; issymA = false; if Amatrix isrealprob = isreal(A); issymA = ishermitian(A); [m,n] = size(A); if (m ~= n) error( 'MATLAB:eigs:NonSquareMatrixOrFunction' ,... 'A must be a square matrix or a function.' ) end else n = varargin{2}; nstr = 'Size of problem, ' 'n' ', must be a positive integer.' ; if ~isscalar(n) || ~isreal(n) error( 'MATLAB:eigs:NonPosIntSize' , nstr) end if issparse(n) n = full(n); end if (round(n) ~= n) warning( 'MATLAB:eigs:NonPosIntSize' ,[ '%s\n ' ... 'Rounding input size.' ],nstr) n = round(n); end end % Process the input B and derive the class of the problem. % Is B present in the eigs call or not? Bpresent = true; Bstr = [ 'Generalized matrix B must be the same size as A and' ... ' either a symmetric positive (semi-)definite matrix or' ... ' its Cholesky factor.' ]; if (nargin < (3-Amatrix)) B = []; Bpresent = false; else % Is the next input B or K? B = varargin{3-Amatrix}; if ~isempty(B) % allow eigs(A,[],k,sigma,opts); if isscalar(B) if n ~= 1 % this input is really K and B is not specified B = []; Bpresent = false; else % This input could be B or K. % If A is scalar, then the only valid value for k is 1. % So if this input is scalar, let it be B, namely % eigs(4,2,...) assumes A=4, B=2, NOT A=4, k=2 if ~isnumeric(B) error( 'MATLAB:eigs:BsizeMismatchAorNotSPDorNotChol' , Bstr); end % Unless, of course, the scalar is 1, in which case % assume the that it is meant to be K. if (B == 1) && ((Amatrix && nargin <= 3) || ... (~Amatrix && nargin <= 4)) B = []; Bpresent = false; elseif ~isfloat(B) error( 'MATLAB:eigs:BsizeMismatchAorNotSPDorNotChol' , Bstr); end end else % B is a not a scalar. if ~isfloat(B) || ~isequal(size(B),[n,n]) error( 'MATLAB:eigs:BsizeMismatchAorNotSPDorNotChol' , Bstr); end isrealprob = isrealprob && isreal(B); end end end % ARPACK can only handle homogeneous inputs if Amatrix classAB = superiorfloat(A,B); A = cast(A,classAB); B = cast(B,classAB); else if ~isempty(B) classAB = class(B); else classAB = 'double' ; end end % argOffset tells us where to get the eigs inputs K, SIGMA and OPTS. % If A is really the function afun, then it also helps us find the % trailing parameters in eigs(afun,n,[B],k,sigma,opts,P1,P2,...) % Values of argOffset: % 0: Amatrix is false and Bpresent is true: % eigs(afun,n,B,k,sigma,opts,P1,P2,...) % 1: Amatrix and Bpresent are both true, or both false % eigs(A,B,k,sigma,opts) % eigs(afun,n,k,sigma,opts,P1,P2,...) % 2: Amatrix is true and Bpresent is false: % eigs(A,k,sigma,opts) argOffset = Amatrix + ~Bpresent; if Amatrix && ((nargin - Bpresent)>4) error( 'MATLAB:eigs:TooManyInputs' , 'Too many inputs.' ) end % Process the input K. if (nargin < (4-argOffset)) k = min(n,6); else k = varargin{4-argOffset}; kstr = [ 'Number of eigenvalues requested, k, must be a' ... ' positive integer <= n.' ]; if ~isnumeric(k) || ~isscalar(k) || ~isreal(k) || (k>n) error( 'MATLAB:eigs:NonIntegerEigQty' , kstr) end if issparse(k) k = full(k); end if (round(k) ~= k) warning( 'MATLAB:eigs:NonIntegerEigQty' ,[ '%s\n ' ... 'Rounding number of eigenvalues.' ],kstr) k = round(k); end end % Process the input SIGMA and derive ARPACK values whch and sigma. % eigs_sigma is the value documented in the help as "SIGMA" that is % passed in to EIGS. eigs_sigma may be either a scalar, including 0, % or a string, including 'SM'. % In ARPACK, eigs_sigma corresponds to two variables: % 1. which, called "whch" to avoid conflict with MATLAB's function % 2. sigma % whch is always a string. sigma is always a scalar. % Valid combinations are shown below. Note eigs_sigma = 0/'SM' has % the same sigma/whch values as eigs_sigma='LM' (default) so these % must be distinguished by the mode. % eigs_sigma = 'SM' or 0 => sigma = 0, whch = 'LM' (mode=3) % eigs_sigma is a string not 'SM' => sigma = 0, whch = eigs_sigma (mode=1) % eigs_sigma is any scalar => sigma = eigs_sigma, whch = 'LM' % (mode=1) whchstr = 'Eigenvalue range sigma must be a valid 2-element string.' ; if (nargin < (5-argOffset)) % default: eigs 'LM' => ARPACK which='LM', sigma=0 eigs_sigma = 'LM' ; whch = 'LM' ; sigma = 0; else eigs_sigma = varargin{5-argOffset}; if ischar(eigs_sigma) % eigs(string) => ARPACK which=string, sigma=0 if ~isequal(size(eigs_sigma),[1,2]) error( 'MATLAB:eigs:EigenvalueRangeNotValid' , ... [whchstr '\nFor real symmetric A, the' ... ' choices are ' '%s' ', ' '%s' ', ' '%s' ', ' '%s' ' or ' '%s' '.' ... '\nFor non-symmetric or complex' ... ' A, the choices are ' '%s' ', ' '%s' ', ' '%s' ', ' '%s' ',' ... ' ' '%s' ' or ' '%s' '.\n' ], ... 'LM' , 'SM' , 'LA' , 'SA' , 'BE' , 'LM' , 'SM' , 'LR' , 'SR' , 'LI' , 'SI' ) end eigs_sigma = upper(eigs_sigma); if strcmp(eigs_sigma, 'SM' ) % eigs('SM') => ARPACK which='LM', sigma=0 whch = 'LM' ; else % eigs(string), where string~='SM' => ARPACK which=string, sigma=0 whch = eigs_sigma; end sigma = zeros(classAB); else % eigs(scalar) => ARPACK which='LM', sigma=scalar if ~isfloat(eigs_sigma) || ~isscalar(eigs_sigma) error( 'MATLAB:eigs:EigenvalueShiftNonScalar' ,... 'Eigenvalue shift sigma must be a scalar.' ) end sigma = eigs_sigma; if issparse(sigma) sigma = full(sigma); end sigma = cast(sigma,classAB); isrealprob = isrealprob && isreal(sigma); whch = 'LM' ; end end % Process the input OPTS and derive some ARPACK values. % ARPACK's minimum tolerance is eps/2 ([S/D]LAMCH's EPS) tol = eps(classAB); maxit = []; p = []; % Always use resid as the start vector, whether it is OPTS.v0 or % randomly generated within eigs. We default resid to empty here. % If the user does not initialize it, we provide a random residual % below. info = int32(1); resid = []; eigs_display = 1; cholB = false; % do we have B or its Cholesky factor? permB = []; % if cholB, is it chol(B), or chol(B(permB,permB))? if (nargin >= (6-argOffset)) opts = varargin{6-argOffset}; if ~isa(opts, 'struct' ) error( 'MATLAB:eigs:OptionsNotStructure' ,... 'Options argument must be a structure.' ) end if isfield(opts, 'issym' ) && ~Amatrix issymA = opts.issym; if (issymA ~= false) && (issymA ~= true) error( 'MATLAB:eigs:InvalidOptsIssym' , ... 'opts.issym must be true or false.' ) end end if isfield(opts, 'isreal' ) && ~Amatrix if (opts.isreal ~= false) && (opts.isreal ~= true) error( 'MATLAB:eigs:InvalidOptsIsreal' , ... 'opts.isreal must be true or false.' ) end isrealprob = isrealprob && opts.isreal; end if ~isempty(B) && (isfield(opts, 'cholB' ) || isfield(opts, 'permB' )) if isfield(opts, 'cholB' ) cholB = opts.cholB; if (cholB ~= false) && (cholB ~= true) error( 'MATLAB:eigs:InvalidOptsCholB' , ... 'opts.cholB must be true or false.' ) end if isfield(opts, 'permB' ) if issparse(B) && cholB permB = opts.permB; if ~isvector(permB) || ~isequal(sort(permB(:)),(1:n)') error( 'MATLAB:eigs:InvalidOptsPermB' ,... 'opts.permB must be a permutation of 1:n.' ) end else warning( 'MATLAB:eigs:IgnoredOptionPermB' , ... [ 'Ignoring opts.permB since B is not its sparse' ... ' Cholesky factor.' ]) end end end end if isfield(opts, 'tol' ) if ~isfloat(tol) || ~isscalar(opts.tol) || ~isreal(opts.tol) || (opts.tol<=0) error( 'MATLAB:eigs:InvalidOptsTol' ,... [ 'Convergence tolerance opts.tol must be a strictly' ... ' positive real scalar.' ]) end tol = cast(full(opts.tol),classAB); end if isfield(opts, 'p' ) p = opts.p; pstr = [ 'Number of basis vectors opts.p must be a positive' ... ' integer <= n.' ]; if ~isnumeric(p) || ~isscalar(p) || ~isreal(p) || (p<=0) || (p>n) error( 'MATLAB:eigs:InvalidOptsP' , pstr) end if issparse(p) p = full(p); end if (round(p) ~= p) warning( 'MATLAB:eigs:NonIntegerVecQty' ,[ '%s\n ' ... 'Rounding number of basis vectors.' ],pstr) p = round(p); end end if isfield(opts, 'maxit' ) maxit = opts.maxit; str = [ 'Maximum number of iterations opts.maxit must be' ... ' a positive integer.' ]; if ~isnumeric(maxit) || ~isscalar(maxit) || ~isreal(maxit) || (maxit<=0) error( 'MATLAB:eigs:OptsMaxitNotPosInt' , str) end if issparse(maxit) maxit = full(maxit); end if (round(maxit) ~= maxit) warning( 'MATLAB:eigs:NonIntegerIterationQty' ,[ '%s\n ' ... 'Rounding number of iterations.' ],str) maxit = round(maxit); end end if isfield(opts, 'v0' ) if ~isfloat(opts.v0) || ~isequal(size(opts.v0),[n,1]) error( 'MATLAB:eigs:WrongSizeOptsV0' ,... 'Start vector opts.v0 must be n-by-1.' ) end if isrealprob if ~isreal(opts.v0) error( 'MATLAB:eigs:NotRealOptsV0' ,... 'Start vector opts.v0 must be real for real problems.' ) end resid(1:n,1) = full(opts.v0); else resid(2:2:2*n,1) = full(imag(opts.v0)); resid(1:2:(2*n-1),1) = full(real(opts.v0)); end end if isfield(opts, 'disp' ) eigs_display = opts.disp; dispstr = 'Diagnostic level opts.disp must be an integer.' ; if ~isnumeric(eigs_display) || ~isscalar(eigs_display) || ... ~isreal(eigs_display) || (eigs_display<0) error( 'MATLAB:eigs:NonIntegerDiagnosticLevel' , dispstr) end if (round(eigs_display) ~= eigs_display) warning( 'MATLAB:eigs:NonIntegerDiagnosticLevel' , ... '%s\n Rounding diagnostic level.' ,dispstr) eigs_display = round(eigs_display); end end if isfield(opts, 'cheb' ) error( 'MATLAB:eigs:ObsoleteOptionCheb' , ... 'Polynomial acceleration opts.cheb is an obsolete option.' ); end if isfield(opts, 'stagtol' ) error( 'MATLAB:eigs:ObsoleteOptionStagtol' , ... 'Stagnation tolerance opts.stagtol is an obsolete option.' ); end end if (isempty(resid)) if isrealprob resid = cast(rand(n,1),classAB); else resid = cast(rand(2*n,1),classAB); end end afunNargs = zeros(1,0); if ~Amatrix % The trailing parameters for afun start at varargin{7-argOffset} % in eigs(afun,n,[B],k,sigma,opts,P1,P2,...). If there are no % trailing parameters in eigs, then afunNargs is a 1-by-0 empty % and no trailing parameters are passed to afun(x) afunNargs = 7-argOffset:nargin; end % Now that OPTS has been processed, do final error checking and % assign ARPACK variables % Extra check on input B if ~isempty(B) % B must be symmetric (Hermitian) positive (semi-)definite if cholB if ~isequal(triu(B),B) error( 'MATLAB:eigs:BsizeMismatchAorNotSPDorNotChol' , Bstr) end else if ~ishermitian(B) error( 'MATLAB:eigs:BsizeMismatchAorNotSPDorNotChol' , Bstr) end end end % Extra check on input K % We fall back on using the full EIG code if K is too large. useeig = false; if isrealprob && issymA knstr = sprintf([ 'For real symmetric problems, must have' ... ' number of eigenvalues k < n.\n' ]); else knstr = sprintf([ 'For nonsymmetric and complex problems,' ... ' must have number of eigenvalues k < n-1.\n' ]); end if isempty(B) knstr = [knstr 'Using eig(full(A)) instead.' ]; else knstr = [knstr 'Using eig(full(A),full(B)) instead.' ]; end if (k == 0) useeig = true; end if isrealprob && issymA if (k > n-1) if (n >= 6) warning( 'MATLAB:eigs:TooManyRequestedEigsForRealSym' , ... '%s' ,knstr) end useeig = true; end else if (k > n-2) if (n >= 7) warning( 'MATLAB:eigs:TooManyRequestedEigsForComplexNonsym' , ... '%s' ,knstr) end useeig = true; end end % Extra check on input SIGMA if isrealprob && issymA if ~isreal(sigma) error( 'MATLAB:eigs:ComplexShiftForRealSymProblem' ,... [ 'For real symmetric problems, eigenvalue shift sigma must' ... ' be real.' ]) end else if ~isrealprob && issymA && ~isreal(sigma) warning( 'MATLAB:eigs:ComplexShiftForHermitianProblem' , ... [ 'Complex eigenvalue shift sigma on a Hermitian problem' ... ' (all real eigenvalues).' ]) end end if isrealprob && issymA if strcmp(whch, 'LR' ) whch = 'LA' ; warning( 'MATLAB:eigs:SigmaChangedToLA' , ... [ 'For real symmetric problems, sigma value ' 'LR' '' ... ' (Largest Real) is now ' 'LA' ' (Largest Algebraic).' ]) end if strcmp(whch, 'SR' ) whch = 'SA' ; warning( 'MATLAB:eigs:SigmaChangedToSA' , ... [ 'For real symmetric problems, sigma value ' 'SR' '' ... ' (Smallest Real) is now ' 'SA' ' (Smallest Algebraic).' ]) end if ~ismember(whch,{ 'LM' , 'SM' , 'LA' , 'SA' , 'BE' }) error( 'MATLAB:eigs:EigenvalueRangeNotValid' , ... [whchstr '\nFor real symmetric A, the' ... ' choices are ' '%s' ', ' '%s' ', ' '%s' ', ' '%s' ' or ' '%s' '.' ], ... 'LM' , 'SM' , 'LA' , 'SA' , 'BE' ); end else if strcmp(whch, 'BE' ) warning( 'MATLAB:eigs:SigmaChangedToLM' , ... [ 'Sigma value ' 'BE' ' is now only available for real' ... ' symmetric problems. Computing ' 'LM' ' eigenvalues instead.' ]) whch = 'LM' ; end if ~ismember(whch,{ 'LM' , 'SM' , 'LR' , 'SR' , 'LI' , 'SI' }) error( 'MATLAB:eigs:EigenvalueRangeNotValid' , ... [whchstr '\nFor non-symmetric or complex' ... ' A, the choices are ' '%s' ', ' '%s' ', ' '%s' ', ' '%s' ',' ... ' ' '%s' ' or ' '%s' '.\n' ], 'LM' , 'SM' , 'LR' , 'SR' , 'LI' , 'SI' ); end end % The remainder of the error checking does not apply for the large % values of K that force us to use full EIG instead of ARPACK. if useeig return end % Extra check on input OPTS.p if isempty(p) if isrealprob && ~issymA p = min(max(2*k+1,20),n); else p = min(max(2*k,20),n); end else if isrealprob && issymA if (p <= k) error( 'MATLAB:eigs:InvalidOptsPforRealSymProb' ,... [ 'For real symmetric problems, must have number of' ... ' basis vectors opts.p > k.' ]) end else if (p <= k+1) error( 'MATLAB:eigs:InvalidOptsPforComplexOrNonSymProb' ,... [ 'For nonsymmetric and complex problems, must have number of' ... ' basis vectors opts.p > k+1.' ]) end end end % Extra check on input OPTS.maxit if isempty(maxit) maxit = max(300,ceil(2*n/max(p,1))); end end % checkInputs %-------------------------------------------------------------------------% function fullEig(nOutputs) % Use EIG(FULL(A)) or EIG(FULL(A),FULL(B)) instead of ARPACK if ~isempty(B) B = Bmtimes(eye(n)); end if isfloat(A) if issparse(A); A = full(A); end else % A is specified by a function. % Form the matrix A by applying the function. if ischar(eigs_sigma) && ~strcmp(eigs_sigma, 'SM' ) % A is a function multiplying A*x AA = eye(n); for i = 1:n AA(:,i) = A(AA(:,i),varargin{afunNargs}); end A = AA; else if (isfloat(eigs_sigma) && eigs_sigma == 0) || strcmp(eigs_sigma, 'SM' ) % A is a function solving A\x invA = eye(n); for i = 1:n invA(:,i) = A(invA(:,i),varargin{afunNargs}); end A = eye(n) / invA; else % A is a function solving (A-sigma*B)\x % B may be [], indicating the identity matrix % U = (A-sigma*B)\sigma*B % => (A-sigma*B)*U = sigma*B % => A*U = sigma*B(U + eye(n)) % => A = sigma*B(U + eye(n)) / U if isempty(B) sB = eigs_sigma*eye(n); else sB = eigs_sigma*B; end U = zeros(n,n); for i = 1:n U(:,i) = A(sB(:,i),varargin{afunNargs}); end A = sB*(U+eye(n)) / U; end end end if isempty(B) eigInputs = {A}; else eigInputs = {A,B}; end % Now with full floating point matrices A and B, use EIG: if (nOutputs <= 1) d = eig(eigInputs{:}); else [V,D] = eig(eigInputs{:}); d = diag(D); end % Grab the eigenvalues we want, based on sigma firstKindices = 1:k; lastKindices = n:-1:n-k+1; if ischar(eigs_sigma) switch eigs_sigma case 'LM' [ignore,ind] = sort(abs(d)); range = lastKindices; case 'SM' [ignore,ind] = sort(abs(d)); range = firstKindices; case 'LA' [ignore,ind] = sort(d); range = lastKindices; case 'SA' [ignore,ind] = sort(d); range = firstKindices; case 'LR' [ignore,ind] = sort(abs(real(d))); range = lastKindices; case 'SR' [ignore,ind] = sort(abs(real(d))); range = firstKindices; case 'LI' [ignore,ind] = sort(abs(imag(d))); range = lastKindices; case 'SI' [ignore,ind] = sort(abs(imag(d))); range = firstKindices; case 'BE' [ignore,ind] = sort(abs(d)); range = [1:floor(k/2), n-ceil(k/2)+1:n]; otherwise error( 'MATLAB:eigs:fullEigSigma' , 'Unknown value of sigma' ); end else % sigma is a scalar [ignore,ind] = sort(abs(d-eigs_sigma)); range = 1:k; end if (nOutputs <= 1) varargout{1} = d(ind(range)); else varargout{1} = V(:,ind(range)); varargout{2} = D(ind(range),ind(range)); if (nOutputs == 3) % flag indicates "convergence" varargout{3} = 0; end end end % FULLEIG %-------------------------------------------------------------------------% function [RB,RBT,perm] = CHOLfactorB % permB may be [] (from checkInputs) if the problem is not sparse % or if it was not passed in as opts.permB perm = permB; if cholB % CHOL(B) was passed in as B RB = B; RBT = B'; else % CHOL(B) was not passed into EIGS if (mode == 1) && ~isempty(B) % Algorithm requires CHOL(B) to be computed if issparse(B) perm = symamd(B); [RB,pB] = chol(B(perm,perm)); else [RB,pB] = chol(B); end if (pB == 0) RBT = RB'; else error( 'MATLAB:eigs:BNotSPD' , ... 'B is not symmetric positive definite.' ) end end end end % CHOLfactorB %-------------------------------------------------------------------------% function [L,U,P,perm] = LUfactorAminusSigmaB % LU factor A-sigma*B, including a reordering perm if it is sparse if isempty(B) if issparse(A) AsB = A - sigma * speye(n); else AsB = A - sigma * eye(n); end else if cholB if issparse(B) AsB = A - sigma * Bmtimes(speye(n)); else AsB = A - sigma * Bmtimes(eye(n)); end else AsB = A - sigma * B; end end if issparse(AsB) [L,U,P,Q] = lu(AsB); [perm,ignore] = find(Q); else [L,U,P] = lu(AsB); perm = []; end % Warn if lu(A-sigma*B) is ill-conditioned % => sigma is close to an exact eigenvalue of (A,B) dU = diag(U); rcondestU = full(min(abs(dU)) / max(abs(dU))); if (rcondestU < eps) if isempty(B) ds = '(A-sigma*I)' ; else ds = '(A-sigma*B)' ; end warning( 'MATLAB:eigs:SigmaNearExactEig' ,... [ds ' has small reciprocal condition' ... ' estimate: %f\n' ... ' indicating that sigma is near an exact' ... ' eigenvalue.\n The algorithm may not converge unless' ... ' you try a new value for sigma.\n' ], ... rcondestU); end end % LUfactorAminusSigmaB %-------------------------------------------------------------------------% function cols = checkIpntr % Check that ipntr returned from ARPACK refers to the start of a % column of workd. if ~isempty(B) && (mode == 3) && (ido == 1) inds = double(ipntr(1:3)); else inds = double(ipntr(1:2)); end [rows,cols] = ind2sub([n,3],inds); nonOneRows = find(rows~=1); if ~isempty(nonOneRows) error( 'MATLAB:eigs:ipntrMismatchWorkdColumn' , ... [ 'One of ipntr(1:3) does not refer to the start' ... ' of a column of the %d-by-3 array workd.' ],n) end end % checkIpntr %-------------------------------------------------------------------------% function v = Amtimes(u) % Matrix-vector multiply v = A*u if Amatrix v = A * u; else % A is a function v = A(u,varargin{afunNargs}); if isrealprob && ~isreal(v) error( 'MATLAB:eigs:complexFunction' , ... 'AFUN is complex; set opts.isreal = false.' ); end end end %-------------------------------------------------------------------------% function v = Bmtimes(u) % Matrix-vector multiply v = B*u if cholB % use B's cholesky factor and its transpose if ~isempty(permB) v(permB,:) = RBT * (RB * u(permB,:)); else v = RBT * (RB * u); end else v = B * u; end end %-------------------------------------------------------------------------% function v = RBsolve(u) % Solve v = RB\u for v if issparse(B) if ~isempty(permB) v(permB,:) = RB \ u; else v = RB \ u; end else RBopts.UT = true; v = linsolve(RB,u,RBopts); end end %-------------------------------------------------------------------------% function v = RBTsolve(u) % Solve v = RB'\u for v if issparse(B) if ~isempty(permB) v = RBT \ u(permB,:); else v = RBT \ u; end else RBTopts.LT = true; v = linsolve(RBT,u,RBTopts); end end %-------------------------------------------------------------------------% function v = AminusSigmaBsolve(u) % Solve v = (A-sigma*B)\u for v if Amatrix if ~isempty(permAsB) % use LU reordering permAsB v(permAsB,:) = U \ (L \ (P * u)); else v = U \ (L \ (P * u)); end else % A is a function v = A(u,varargin{afunNargs}); if isrealprob && ~isreal(v) error( 'MATLAB:eigs:complexFunction' , ... 'AFUN is complex; set opts.isreal = false.' ); end end end % AminusSigmaBsolve %-------------------------------------------------------------------------% % function displayRitzValues % % Display a few Ritz values at the current iteration % iter = double(ipntr(15)); % if (iter > eigs_iter) && (ido ~= 99) % eigs_iter = iter; % % ds = sprintf(['Iteration %d: a few Ritz values of the' ... % % ' %d-by-%d matrix:'],iter,p,p); % % disp(ds) % if isrealprob % if issymA % dispvec = workl(double(ipntr(6))+(0:p-1)); % if strcmp(whch,'BE') % % roughly k Large eigenvalues and k Small eigenvalues % disp(dispvec(max(end-2*k+1,1):end)) % else % % k eigenvalues % disp(dispvec(max(end-k+1,1):end)) % end % else % dispvec = complex(workl(double(ipntr(6))+(0:p-1)), ... % workl(double(ipntr(7))+(0:p-1))); % % k+1 eigenvalues (keep complex conjugate pairs together) % disp(dispvec(max(end-k,1):end)) % end % else % dispvec = complex(workl(2*double(ipntr(6))-1+(0:2:2*(p-1))), ... % workl(2*double(ipntr(6))+(0:2:2*(p-1)))); % disp(dispvec(max(end-k+1,1):end)) % end % end % end %-------------------------------------------------------------------------% function flag = processEUPDinfo(warnNonConvergence) % Process the info flag returned by the ARPACK routine **eupd flag = 0; if (info ~= 0) es = [ 'Error with ARPACK routine ' eupdfun ':\n' ]; switch double(info) case 2 ss = sum(select); if (ss < k) error( 'MATLAB:eigs:ARPACKroutineError02ssLTk' , ... [es 'The logical variable select was only set' ... ' with %d 1' 's instead of nconv=%d (k=%d).\n' ... 'Please report this to the ARPACK authors at' ... ' arpack@caam.rice.edu.' ], ... ss,double(iparam(5)),k) else error( 'MATLAB:eigs:ARPACKroutineError02' , ... [es 'The LAPACK reordering routine %strsen' ... ' did not return all %d eigenvalues.' ], ... aupdfun(1),k); end case 1 error( 'MATLAB:eigs:ARPACKroutineError01' , ... [es 'The Schur form could not be reordered by the' ... ' LAPACK routine %strsen.\nPlease report this to the' ... ' ARPACK authors at arpack@caam.rice.edu.' ], ... aupdfun(1)) case -14 error( 'MATLAB:eigs:ARPACKroutineErrorMinus14' , ... [es aupdfun ... ' did not find any eigenvalues to sufficient accuracy.' ]); otherwise error( 'MATLAB:eigs:ARPACKroutineError' , ... [es 'info = %d. Please consult the ARPACK Users' '' ... ' Guide for more information.' ],full(info)); end else nconv = double(iparam(5)); if (nconv == 0) if (warnNonConvergence) warning( 'MATLAB:eigs:NoEigsConverged' , ... 'None of the %d requested eigenvalues converged.' ,k) else flag = 1; end elseif (nconv < k) if (warnNonConvergence) warning( 'MATLAB:eigs:NotAllEigsConverged' , ... 'Only %d of the %d requested eigenvalues converged.' , ... nconv,k) else flag = 1; end end end end % processEUPDinfo %-------------------------------------------------------------------------% function printTimings % Print the time taken for each major stage of the EIGS algorithm if (mode == 1) innerstr = sprintf([ 'Compute A*X:' ... ' %f\n' ],cputms(3)); elseif (mode == 3) if isempty(B) innerstr = sprintf([ 'Solve (A-SIGMA*I)*X=Y for X:' ... ' %f\n' ],cputms(3)); else innerstr = sprintf([ 'Solve (A-SIGMA*B)*X=B*Y for X:' ... ' %f\n' ],cputms(3)); end end if ((mode == 3) && (Amatrix)) if isempty(B) prepstr = sprintf([ 'Pre-processing, including lu(A-sigma*I):' ... ' %f\n' ],cputms(1)); else prepstr = sprintf([ 'Pre-processing, including lu(A-sigma*B):' ... ' %f\n' ],cputms(1)); end else prepstr = sprintf([ 'Pre-processing:' ... ' %f\n' ],cputms(1)); end sstr = sprintf( '***********CPU Timing Results in seconds***********' ); ds = sprintf([ '\n' sstr '\n' ... prepstr ... 'ARPACK' 's %s: %f\n' ... innerstr ... 'Post-processing with ARPACK' 's %s: %f\n' ... '***************************************************\n' ... 'Total: %f\n' ... sstr '\n' ], ... aupdfun,cputms(2),eupdfun,cputms(4),cputms(5)); disp(ds) end % printTimings %-------------------------------------------------------------------------% % End of nested functions %-------------------------------------------------------------------------% end % EIGS %-------------------------------------------------------------------------% % Subfunctions %-------------------------------------------------------------------------% function tf = ishermitian(A) %ISHERMITIAN tf = isequal(A,A'); end % ishermititan %-------------------------------------------------------------------------% % End of subfunctions %-------------------------------------------------------------------------% |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 | function [Hi]=steering_matrix(ii,beta,Stop,Pass,ZoneA,CenterZoneA,k) if Stop+1<=ii&&ii<=360-Stop Stop_theta=[1:ii-(Stop+1) ii+(Stop+1):360]; elseif ii<Stop+1 Stop_theta=ii+(Stop+1):1:360-(Stop-ii+1); else %ii>360-Stop Stop_theta=1+Stop-(360-ii):1:ii-(Stop+1); end if Pass+1<=ii&&ii<=360-Pass Pass_theta=ii-Pass:ii+Pass; elseif ii<Pass+1 Pass_theta=[1:ii+Pass 360-(Pass-ii):360]; else %ii>360-Pass Pass_theta=[1:Pass-(360-ii) ii-Pass:360]; end D=zeros(360-(2*Stop+1),size(ZoneA,1)); B=zeros(2*Pass+1,size(ZoneA,1)); for nM=1:size(ZoneA) for nst=1:length(Stop_theta) % ust=[sin(Stop_theta(nst)/180*pi) % cos(Stop_theta(nst)/180*pi)]; ust=[cos(Stop_theta(nst)/180*pi) sin(Stop_theta(nst)/180*pi) ]; % D(nst,nM)=exp(j*k*(ZoneA(nM,:) )*ust)/size(ZoneA,1); % D(nst,nM)=exp(j*k*(ZoneA(nM,:)-CenterZoneA)*ust)/size(ZoneA,1); D(nst,nM)=exp(j*k*(ZoneA(nM,:))*ust)/size(ZoneA,1); end for npa=1:length(Pass_theta) upa=[cos(Pass_theta(npa)/180*pi) sin(Pass_theta(npa)/180*pi) ]; % B(npa,nM)=exp(j*k*(ZoneA(nM,:) )*upa)/size(ZoneA,1); % B(npa,nM)=exp(j*k*(ZoneA(nM,:)-CenterZoneA)*upa)/size(ZoneA,1); B(npa,nM)=exp(j*k*(ZoneA(nM,:))*upa)/size(ZoneA,1); end end [h d]=EIGS(inv( D '*D+beta*eye(size(D' *D)) )*B '*B,1,' lm'); Hi=h.'; end |
ここからが実行ファイル
実行ファイル1:伝達関数行列の計算
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 | clear all % f_max=10^4; rho=1.205; c=343; freq=100:100:7000; % freq=1000; x=-0.1260:0.021:0.1260; y=-0.1155:0.021:0.1155; xy=zeros(length(x)*length(y),2); n=0; for X=1:length(x) for Y=1:length(y) n=1+n; xy(n,1:3)=[x(X) y(Y) 0]; end end ZoneA=xy+[-0.6*ones(size(xy,1),1) zeros(size(xy,1),1) zeros(size(xy,1),1)]; ZoneB=xy+[+0.6*ones(size(xy,1),1) zeros(size(xy,1),1) zeros(size(xy,1),1)]; xi=[ZoneA;ZoneB]; % % % % y_secondary_i=(ys1,ys2,ys3) R=1.2; theta=linspace(0,2*pi-2*pi/48,48); Speaker=[R*cos(theta). ' R*sin(theta).' zeros(size(theta,2),1)]; Z=cellzeros(size(xi,1),size(Speaker,1),length(freq)); % Z=cellzeros(size(xi,1),size(Speaker,1),f_max); h = waitbar(0, 'Please wait...' ); for f=1:1:length(freq) % for f=1:f_max % w=2*pi*f; % k=2*pi*f/c; w=2*pi*freq(f); k=2*pi*freq(f)/c; for ns=1:length(Speaker) for nm=1:size(xi,1) [r]=radius(Speaker(ns,1),xi(nm,1),Speaker(ns,2),xi(nm,2),Speaker(ns,3),xi(nm,3)); Z{nm,ns}(f)=1i*k*c*rho/(4*pi*r)*exp(-1i*k*r); end end waitbar(f/length(freq),h) % waitbar(f/f_max,h) end close(h) save( 'Z100_7000.mat' , 'Z' , '-v7.3' ) |
実行ファイル2:ステアリング行列の計算
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 | % % % % 26/09/2013 % % % % Optimizing the planarity of sound zones clear all x=-0.1260:0.021:0.1260; y=-0.1155:0.021:0.1155; % freq=1000; freq=100:100:7000; xy=zeros(length(x)*length(y),2); n=0; for X=1:length(x) for Y=1:length(y) n=1+n; xy(n,1:2)=[x(X) y(Y)]; end end CenterZoneA=[-0.6 0]; ZoneA=xy+[-0.6*ones(size(xy,1),1) zeros(size(xy,1),1)]; ZoneB=xy+[+0.6*ones(size(xy,1),1) zeros(size(xy,1),1)]; xi=[ZoneA;ZoneB]; % % % % y_secondary_i=(ys1,ys2,ys3) R=1.2; theta=linspace(0,2*pi-2*pi/48,48); Speaker=[R*cos(theta). ' R*sin(theta).' ]; % % % % % % % % % % % % % c=343; beta=10^-4; Stop=6; Pass=3; % Phi=90; % % % % % % % % % % % % % H=cellzeros(size(Speaker,1),size(ZoneA,1),length(freq)); h = waitbar(0, 'Please wait...' ); for f=1:1:length(freq) w=2*pi*freq(f); k=2*pi*freq(f)/c; for ii=1:360 [Hi]=steering_matrix(ii,beta,Stop,Pass,ZoneA,CenterZoneA,k); for n=1:size(ZoneA,1) H{ii,n}(f)=Hi(n).'; end end waitbar(f/length(freq),h) end close(h) save( 'H100_7000.mat' , 'H' , '-v7.3' ) % [q d]=eigs(inv( Gd'*Gd+beta*eye(size(D'*D)) )*(Gb'*H'*Gamma*H*Gb),1,'lm'); |
実行ファイル3:Planarityの入力qの計算
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 | % % % % 30/09/2013 % % % % Optimizing the planarity of sound zones clear all load( 'H100_7000.mat' ) load( 'Z100_7000.mat' ) lambda2=0; % lambda2=10^10; x=-0.1260:0.021:0.1260; y=-0.1155:0.021:0.1155; freq=100:100:7000; xy=zeros(length(x)*length(y),2); n=0; for X=1:length(x) for Y=1:length(y) n=1+n; xy(n,1:2)=[x(X) y(Y)]; end end CenterZoneA=[-0.6 0]; ZoneA=xy+[-0.6*ones(size(xy,1),1) zeros(size(xy,1),1)]; ZoneB=xy+[+0.6*ones(size(xy,1),1) zeros(size(xy,1),1)]; xi=[ZoneA;ZoneB]; % % % % y_secondary_i=(ys1,ys2,ys3) R=1.2; theta=linspace(0,2*pi-2*pi/48,48); Speaker=[R*cos(theta). ' R*sin(theta).' ]; % % % % % % % % % % % % % c=343; beta=10^-4; % % % % % % weighting gamma=zeros(360,360); AAA=30:1:150; % AAA=90; for n=1:length(AAA) gamma(AAA(n),AAA(n))=1; end % AAA=60:1:120; % BBB=hamming(length(AAA)); % for n=1:length(AAA) % gamma(AAA(n),AAA(n))=BBB(n); % end % % % % % % % % % % % % % C=zeros(length(freq),1); AE=zeros(length(freq),1); q_optimal=zeros(size(Speaker,1),length(freq)); h = waitbar(0, 'Please wait...' ); for f=1:1:length(freq) [G]=cell_matrix(Z,size(xi,1),size(Speaker,1),f); [Hb]=cell_matrix(H,360,size(ZoneA,1),f); Gb=G(1:size(xi,1)/2,:); Gd=G(size(xi,1)/2+1: end ,:); [q d]=eigs(inv( Gd '*Gd+lambda2*eye(size(Gd' *Gd)) )*(Gb '*Hb' *gamma*Hb*Gb),1, 'lm' ); q_optimal(1:size(Speaker,1),f)=q; ref=mean(abs(Gb*q))/mean(abs(Gb*ones(size(Gb,2),1))); AE(f,1)=(q'*q)/(size(Speaker,1)*ref^2); C(f,1)=size(Gd,1)*q '*Gb' *Gb*q/........ ( size(Gb,1)*q '*Gd' *Gd*q ); waitbar(f/length(freq),h) end close(h) save( 'PC100_7000.mat' , 'AE' , 'C' , 'q_optimal' ) |
実行ファイル4:表示
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 | clear all load( 'PC1000_optpart3.mat' ) qpc=q_optimal; % load('ACC1000_optpart3.mat') % qacc=q_optimal; % load('PMandACC1000_optpart3.mat') % qpmandacc=q_optimal; rho=1.205; c=343; R=1.2; freq=1000; % % % % % % x=-0.1260:0.021:0.1260; y=-0.1155:0.021:0.1155; xy=zeros(length(x)*length(y),2); n=0; for X=1:length(x) for Y=1:length(y) n=1+n; xy(n,1:2)=[x(X) y(Y)]; end end CenterZoneA=[-0.6 0]; ZoneA=xy+[-0.6*ones(size(xy,1),1) zeros(size(xy,1),1)]; ZoneB=xy+[+0.6*ones(size(xy,1),1) zeros(size(xy,1),1)]; clear x clear y % % % % % % theta=linspace(0,2*pi-2*pi/48,48); Speaker=[R*cos(theta). ' R*sin(theta).' ]; % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % x=-1.8:0.02:1.8; y=-1.8:0.02:1.8; % Pressure=zeros(length(x),length(y)); % for f=1:length(freq) for f=1 pcPressure=zeros(length(y),length(x)); % accPressure=zeros(length(y),length(x)); % pmandaccPressure=zeros(length(y),length(x)); k=2*pi*freq(f)/c; for ns=1:size(Speaker,1) for X=1:length(x) for Y=1:length(y) r=sqrt( (x(X)-Speaker(ns,1))^2+(y(Y)-Speaker(ns,2))^2 ); if r<=0.05 r=0.05; end pcPressure(Y,X)=pcPressure(Y,X)+qpc(ns,f)/max(abs(qpc))*1i*k*c*rho/(4*pi*r)*exp(-1i*k*r); accPressure(Y,X)=accPressure(Y,X)+qacc(ns,f)/max(abs(qacc))*1i*k*c*rho/(4*pi*r)*exp(-1i*k*r); pmandaccPressure(Y,X)=pmandaccPressure(Y,X)+qpmandacc(ns,f)/max(abs(qpmandacc))*1i*k*c*rho/(4*pi*r)*exp(-1i*k*r); end end end figure(3) subplot(231) surf(x,y,10*log10(abs(pcPressure))) shading interp view([0 90]) title( 'PC' ) colorbar hold on plot3(Speaker(:,1),Speaker(:,2),1000*ones(size(Speaker,1)), 'wo' ) plot3(ZoneA(:,1),ZoneA(:,2),10^30*ones(size(ZoneA,1)), 'w.' ) plot3(ZoneB(:,1),ZoneB(:,2),10^30*ones(size(ZoneB,1)), 'w.' ) hold off subplot(234) surf(x,y,angle(pcPressure)) % colormap gray shading interp view([0 90]) title(freq(f)) colorbar hold on plot3(Speaker(:,1),Speaker(:,2),1000*ones(size(Speaker,1)), 'wo' ) plot3(ZoneA(:,1),ZoneA(:,2),10^30*ones(size(ZoneA,1)), 'w.' ) plot3(ZoneB(:,1),ZoneB(:,2),10^30*ones(size(ZoneB,1)), 'w.' ) hold off % subplot(232) % surf(x,y,10*log10(abs(accPressure))) % shading interp % view([0 90]) % title('ACC') % colorbar % hold on % plot3(Speaker(:,1),Speaker(:,2),1000*ones(size(Speaker,1)),'wo') % plot3(ZoneA(:,1),ZoneA(:,2),10^30*ones(size(ZoneA,1)),'w.') % plot3(ZoneB(:,1),ZoneB(:,2),10^30*ones(size(ZoneB,1)),'w.') % hold off % subplot(235) % surf(x,y,angle(accPressure)) % % colormap gray % shading interp % view([0 90]) % colorbar % title(freq(f)) % hold on % plot3(Speaker(:,1),Speaker(:,2),1000*ones(size(Speaker,1)),'wo') % plot3(ZoneA(:,1),ZoneA(:,2),10^30*ones(size(ZoneA,1)),'w.') % plot3(ZoneB(:,1),ZoneB(:,2),10^30*ones(size(ZoneB,1)),'w.') % hold off % % subplot(233) % surf(x,y,10*log10(abs(pmandaccPressure))) % shading interp % view([0 90]) % title('PMandACC') % colorbar % hold on % plot3(Speaker(:,1),Speaker(:,2),1000*ones(size(Speaker,1)),'wo') % plot3(ZoneA(:,1),ZoneA(:,2),10^30*ones(size(ZoneA,1)),'w.') % plot3(ZoneB(:,1),ZoneB(:,2),10^30*ones(size(ZoneB,1)),'w.') % hold off % subplot(236) % surf(x,y,angle(pmandaccPressure)) % % colormap gray % shading interp % view([0 90]) % title('PMandACC') % colorbar % hold on % plot3(Speaker(:,1),Speaker(:,2),1000*ones(size(Speaker,1)),'wo') % plot3(ZoneA(:,1),ZoneA(:,2),10^30*ones(size(ZoneA,1)),'w.') % plot3(ZoneB(:,1),ZoneB(:,2),10^30*ones(size(ZoneB,1)),'w.') % hold off end |
学生の頃に、論文のキャッチアップをするために書いたコードなので汚いですが、ご了承ください。
コメント